Torch Custom learning rate scheduler
Torch Custom learning rate scheduler
Learning rate scheduler
带warmup的learning rate随余弦函数变化的scheduler
- Warmup Phase lr从0线性增加init_lr
- Decay Phase lr随cos逐步降低到0
- 通过调整num_cycles决定经过cos的多少个周期
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import math
import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
def get_cosine_schedule_with_warmup(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
num_cycles: float = 0.5, # cos的半个周期 lr降到0后不再上升
last_epoch: int = -1, # 表示从第0个epoch开始
):
def lr_lambda(current_step):
# Warmup
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
# decadence
progress = float(current_step - num_warmup_steps) / float(
max(1, num_training_steps - num_warmup_steps)
)
return max(
0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
This post is licensed under CC BY 4.0 by the author.